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On introducing the Van der Waals forces and Kittel mechanism of coupling into consideration, a physical ap-
proach to analytical computation of the Young modulus E has been outlined. By using a numerical analysis,
a nontrivial behavior of the dependence of E on the atomic mass of an element has been predicted.

Within the framework of the continuum approach of elasticity theory, the Young modulus E is considered as
a certain phenomenological parameter [1–3], the values of which can be found experimentally by the method of lon-
gitudinal extension of thin rods.

The object of the present investigation is an analysis of the function E(A) proceeding from certain purely
physical assumptions.

If a metal rod is being torn asunder, then, as numerous experiments show (the references are not listed be-
cause of their exceedingly great number), the value of E will not depend on the rod length l when it decreases to as
low as the interatomic distance. The latter clearly points only to the fact that the nature of the break is microscopic
and therefore the breaking force must be closely related to purely microscopic interactions.

By taking into consideration the dimensionality of the Young modulus, viz., dyn/cm2 or erg/cm3, which is the
energy of the unit volume of a body, it becomes evident that the quantity E correlates only with the internal potential
energy attributable to the interaction of the atoms located at a certain distance a from one another. From dimensional-
ity considerations it follows that

E = 
U

__


a
3  . (1)

Physically, the role of the potential energy may belong both to the Van der Waals (VW) interaction attribut-
able to the purely electromagnetic nature of the coupling and the Ruderman–Kittel (RK) one, which in metals plays
the role of the Heisenberg exchange interaction. But in the general case, by virtue of the additivity of potential ener-
gies we write U

__
 = U

__
VW + U

__
RK + U

__
H, where the last term accounts for the purely magnetic nature of exchange inter-

action inherent in magnets (e.g., iron) and represents, as is known [4], the Heisenberg spin–spin interaction of the
outer shells of atoms. A more detailed discussion of the contribution of U

__
RK follows below.

Since, according to [5], U
__

VW = 
23²c

4πr7
 α1α2, assuming that r = a we obtain from Eq. (1) the following for-

mula to calculate the elasticity modulus:

E = 
23²c

4πa
10 α1α2 . (2)

By virtue of the definition of polarizability at α1 = α2 = ξaB
3 , where ξ depends on the atomic mass A of an element

in the Mendeleev table, whereas aB = ²2/(me2) = 0.5⋅10−8 cm, and from Eq. (2) we find that

E = 
23²c

4πa
4  





aB

a





6

 ξ2
 (A) . (3)
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Selecting the distance a = a0 = 2.36⋅10−8 cm and assuming that ξ = 1, at ² = 10−27 erg⋅sec and c = 3⋅1010

cm/sec, we obtain

E = E0 = 0.16⋅10
11

 Pa . (4)

As is seen from Table 1, the given value corresponds, with an acceptable accuracy, to the Young modulus for lead
and is taken as a standard. We also take the value of a0 as a standard. For further convenience, we rewrite Eq. (3) in
the form

E = E0Φ (A) , (5)

where E0 = 
23²c

4πa0
4 = 0.16⋅1011 Pa, whereas the function Φ(A) = 





aB
a0





6

ξ2(A) needs determination.

The numerical analysis based on the method of nonlinear correlation has shown that to obtain a satisfactory
agreement of E with the values for the remaining elements of the table, the form of the function Φ(A) should be as
follows:

Φ (A) = 10
−4

 S (A) A3.8
 exp (− A ⁄ 10) (4.39⋅10

−3
A

3
 − 0.75A

2
 + 40.5A − 609.75) , (6)

where S(A) = 0.1[1 + 9θ(A − A0)] is the step function in which θ(x) is the Heaviside function determined according the
standard rule

θ (x) = 




1 ,   if   x > 0 ;
0 ,   if   x ≤ 0 ,

(7)

and the atomic mass A0 plays the role of the parameter the value of which is unknown and therefore we may only
state that A0 is of the order of 100. It is quite probable that the role of the corresponding element with the atomic
number Z0 belongs to tin; however, this assumption needs experimental verification. A nontrivial fact may be that such
a metal exists in nature but has not yet been found.

Dependence (6) is illustrated in Fig. 1. It is seen that at A = A0 a local maximum of the function Φ(A) is
reached. It can be easily verified by direct substitution that for tin with A C 118 we obtain from Eq. (5), subject to
Eqs. (4) and (6), the value

E = 0.873⋅10
11

 Pa , (8)

which, as is seen from Table 1, is close to the value taken by us from the reference data of [6]. All the remaining
values of the Young modulus (it can also be verified easily with the aid of Eqs. (5) and (6)) given in Table 1 are
described by Eq. (6) within 3–7%.

In order to predict the values of E for other metals, we consider, as an example, five elements: Au (A = 119),
Pt (A = 195), W (A = 184), Ag (A = 108), and Ti (A = 47.9). According to Eq. (6) we have

Fig. 1. Schematic behavior of the Young modulus depending on the atomic
mass A of an element from the Mendeleev table of elements.
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EAu = 0.293⋅10
11

 Pa ,

EPt = 0.329⋅10
11

 Pa ,

EW = 0.614⋅10
11

 Pa ,

EAg = 0.980⋅10
11

 Pa ,

ETi = 3.01⋅10
11

 Pa .

(9)

The above numerical values are in satisfactory agreement with [7].
Thus, with the aid of the proposed approach and using a numerical analysis, it has been proved that the

Young modulus can be entirely determined by one parameter, viz., by the atomic mass of the metal considered. Atten-
tion should also be paid to the following important fact. In metals there is such a type of interaction between polar-
ized (in a magnetic sense) atoms as the Ruderman–Kittel exchange coupling U

__
RK [8] attributable to the spin character

of atoms with partially open d- or f-shells. It manifests itself due to the exchange by conduction electrons among these
atoms because of the fact that the electrons transfer interaction as a faster subsystem.

But when we speak of metals, along with the Van der Waals interaction one should also take into account
U
__

RK. However, since, in order of magnitude [8], U
__

RK D Js−d
 2  ⁄ εF, where Js−d is the energy of exchange coupling and

εF is the Fermi energy, and it is possible to consider that U
__

RK C 10−13 erg, the additive contribution to E by U
__

RK will
be on the order of U

__
RK

 ⁄ a3 D 108 Pa, which is much less than the Van der Waals contribution U
__

VW, and therefore we
ignore U

__
RK.

CONCLUSIONS

1. The microscopic nature of the coefficient of longitudinal deformation has been analyzed.
2. An approximating formula describing the dependence of E on the atomic mass for a metal of arbitrary type

has been suggested.
3. Due to the approach outlined (Eqs. (6) and (7)), a number of values of E have been calculated (see Eq. (9)).
4. Attention is drawn to the Young modulus jump beginning from a certain atomic mass A0.

NOTATION

A, atomic mass of an element in the Mendeleev table of elements; A0, phenomenological parameter; a, in-
teratomic distance; a0, standard interatomic distance; aB, Bohr radius; c, speed of light in a vacuum; e, electron
charge; E, Young modulus; E0, standard Young modulus; ², Planck constant; Js−d, energy of s-d-exchange interac-
tion; m, electron mass; U

__
, potential energy; α, coefficient of atom polarization; Φ, approximating function; θ(x),

Heaviside function; ξ, numerical factor. Subscripts: VW, RK, and H, Van der Waals, Ruderman–Kittel, and Heisen-
berg interactions.

TABLE 1. Values of the Young Modulus

A 27 (Al) 56 (Fe) 64 (Cu) 118 (Sn) 207 (Pb)

E⋅10−11, Pa 0.7 2.1 1.3 0.9 0.16

E⋅10−11, Pa; 
calculation by Eq. (5)

0.69 2.04 1.208 0.873 0.16
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